

Industrial application of DEM: Capabilities and Challenges

John Favier DEM Solutions Ltd

Figure 2: A 5 micron boad on a HEPA filter fiber

www.dem-solutions.com

About DEM Solutions

- Founded in 2002
- Headquarters in Edinburgh, UK
- Office in Lebanon, New Hampshire, USA
- Developers of EDEM software for DEM simulation and analysis
- EDEM 1.0 released Oct 2005
- EDEM 1.1 released June 2006
- EDEM-FLUENT Coupling Module released June 2006

EDEM

- > 3D DEM simulation and analysis tool
- Fully functional GUI for pre- and postprocessing
- CAD compatible for import of particle and equipment geometry
- Applications interface for user programmable control of particle initialisation, contact physics, body forces
 - Suite of tools for data visualisation, analysis
 - and extraction

Couples with other

EDEM Modelling Pipeline

EDEM^{**} Some examples of industrial application

Drivers for application of CAE

- Engineering
 - o Higher and more consistent quality product
 - o Faster production
 - o Lower energy usage
 - o Design of new products and processes
- Business
 - o Better return on investment
 - o Shorter time to market
 - o Technical advants

Drivers for application of DEM

- Engineering
 - o Provides information about internal bulk behaviour
 - Expanding range of industrial applications and application know-how
 - Discrete methods required to advance quality of predictive simulation of granular systems
- Computational
 - o Faster computing
 - o Improving performance/cost of hardware
 - o Coupling of DEM with other pu methods

Characteristics of particulate solids handling and processing operations

Range of particle shape and size • Usually non-spherical particles

Complex machine geometry • Moving machine components

May have interactions which involve mass, momentum, and heat transfer

- Between particles
- Between particles and machinery
- Between particles and fluids

What information can DEM provide?

Particle

Particle kinematics
Particle size/mass/temperature
Particle-particle contact forces
Particle-boundary contact forces

Particle body forces: gravitational, fluid, electro-magnetic New particle formation

DEM results

Bulk

Mixing dynamics Uniformity of flow

Bridging

Granulation

Agglomeration Mechanical energy consumption

Particle-machine interaction

Pneumatic transport

Segregation

Residence time/ hold-up

Damage/attrition

Breakage

Surface coating

Erosion

Heat transfer

Fluidization

- Methods to determine DEM parameters from bulk as well as individual particle measurements
 - Correlation between bulk test and process characteristics

ort

Back calculation

es as particle size gets

DOE

- Response surface fitting
- More than one test required

- 2. Methods to determine suitable particle shape representation
 - What is the effect of particle shape on bulk behaviour?
 - What are the best correlating metrics between real shape and model

- 3. Parametric studies of DEM contact algorithms
 - o Sensitivity
 - o Scaling

Optimisation procedures

- 4. Establishment of benchmarking for DEM codes
 - o Validation against standard tests
 - Relate DEM model to continuum model benchmarks
 - Relate DEM simulation to alternative techniques
 - o Reference point for the "layman"

Conclusions

- DEM is now a viable simulation tool for industrial particulate processes
- More DEM validation and benchmarking is required to increase acceptance by industry
- Integration with other CAE tools is advancing and will widen the use of DEM
- DEM is an valuable addition to the engineers toolkit which compliments experiment and physical testing

