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1. PARTICLE-PARTICLE INTERACTIONS

(i)   Elastic
(ii)   Elastic-perfectly plastic
(iii) Autoadhesive
(iv)  Liquid bridges

2. PARTICLE-FLUID INTERACTIONS

All restricted to spherical particles !
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ELASTIC CONTACT INTERACTIONS

Normal interaction   (Hertz, 1896)

pressure distribution
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Tangential interaction   (Mindlin & Deresewicz, 1953)
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traction distribution at Atraction distribution at B

traction distribution due to unloading from A to  B

loading – O to A

force-displacement

unloading – A to C

reloading – C to A

inverse loading – C to C*
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DEM implementation

see also Thornton (1999) Mechanics of granular materials – an introduction. 
(Oda & Iwashita, eds.) Balkema, 207-217.
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Diagram of the oblique impact of a sphere with a plane surface.

 FE model for the oblique impact of a sphere with a half-space

mµ

stress

strain

FEM simulations Wu (2001)



  



  

 ELASTIC-PERFECTLY PLASTIC CONTACT INTERACTIONS

Force-displacement curves for 
elastoplastic impact experiments

(Goldsmith & Lyman, 1960)

If plastic deformation occurs then the applied displacement is not fully 
recovered and the loading and unloading curves do not coincide.

FEM results (Thornton et al, 2001)

Normal interaction



  

FEM results (Wu, Li & Thornton, 2003)

As shown in the figure, the Hertzian pressure distribution is valid until the pressure at 
the centre of the contact is equal to 1.6 times the yield stress of the material, at which 
point yield occurs below the centre of the contact area. Further compression results in 
a spreading of the plastic deformation zone below the surface and a slight modification 
of the shape of the contact pressure distribution as the maximum contact pressure 
increases further. When the pressure at the centre of the contact reaches about 2.4 
times the yield stress the plastic deformation zone in the substrate reaches the 
contact surface at the perimeter of the contact area. Beyond this point, further 
compression results in a significant change in the form of the pressure distribution. 
Over an increasing central portion of the contact area the contact pressure becomes 
almost constant with only a small increase in the pressure at the centre of the contact.

Li, Wu & Thornton (2002) presented a 
theoretical model, which considered the 
variation of the maximum pressure with 
compression and the change in the contact 
curvature owing to irrecoverable plastic 
deformation during loading. They obtained 
theoretical force displacement predictions 
in very good agreement with the FEM data. 
However, no tangible analytical solution is 
available.

Contact pressure distributions during loading



  

FEM results (Wu, Li & Thornton, 2003)

Contact pressure distributions during unloading

Although the unloading is elastic, as can 
be seen from the figure, the pressure 
distributions are not Hertzian. 

The problem has been solved by 
Mesarovic and Johnson (2000) who 
derived the following expression for the 
pressure distribution
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are the pressure and contact radius at the
start of unloading.

Unfortunately the theory does not lead to an 
analytical solution for the contact force-
displacement curve.



  

A simplified analytical solution

Thornton (1997), Thornton & Ning (1998), 
Mishra & Thornton (2002)

A limiting contact pressure yp
is defined and it is assumed that

elastic.isresponsethefor y0 pp ≤

It is also assumed that further 
compression results in fully 
plastic deformation.

In order to model the plastic phase the 
normal contact pressure distribution is 
approximated by a Hertzian distribution 
with a cut-off defined by the limiting 
contact pressure, as shown in the figure.

The consequence of this is that the 
plastic loading curve is given by a straight 
line tangent to the Hertzian curve at y

*
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The limiting contact pressure can be considered to 
be an approximation to the hardness, which is 
related to the yield stress        by a constraint 
factor c.
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Application
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Samini, Hassanpour & Ghadiri (2005)

Samini (2003)

Diametrical compression tests 
(using an Instron testing machine 
with a 10 N load cell) on ‘spherical’ 
soft synthetic detergent granules.

Plot N against 23 /α

Fit straight line to data points 

for                to obtain slope K . yNN <
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On a plot of N against α

Fit straight line to data points 

for                to obtain slope pk

Calculate limiting contact pressure

and yield stress.
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comments σ

ε

yσBoth the FEM results of Wu et al (2003) 
and the Thornton (1997) approximation 
only strictly apply to linear elastic-
perfectly plastic material, as illustrated by 
the stress-strain curve shown in the figure.

Many materials exhibit strain hardening and, for most materials, the 
measurement of the so-called yield stress is ambiguous. Therefore one should 
be somewhat circumspect with regard to values of yield stress provided by 
the manufacturer. 

If one wishes to estimate the yield stress from the limiting contact 
pressure then one must select an appropriate constraint factor for the 
level of loading applied. 
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FEM simulations have shown that the theory of Mindlin & Deresiewicz (1953) 
applies to both elastic and elastoplastic particles, Wu & Thornton (2007).

Tangential interaction



  

Effect of contact plastic deformation 
on the quasi-static stress-strain – dilation response

sin φ
vol. strain

deviator strain deviator strain

axisymmetric compression in a periodic cell

Thornton (2000)



  

 AUTOADHESIVE CONTACT INTERACTIONS (ELASTIC)

In particle technology there is an increasing desire to have smaller and 
smaller particles. For particle sizes less than say 50 µm, van der Waals 
forces become significant and particles tend to stick to each other.

Two theoretical models for the autoadhesion of spheres were developed 
over 30 years ago (a) the JKR model (Johnson, Kendall & Roberts, 1971) 
and (b) the DMT model (Derjaguin, Muller & Topolov, 1975).

The two models were initially thought to be competitive but subsequently 
shown to be limits to a range of solutions (Maugis, 1992) that are governed 
by the non-dimensional parameter
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For like bodies, the interface energy is twice the surface energy,            .     γ=Γ 2



  

It is now common practice to use the atomic force microscope (AFM) to 
measure the ‘pull-off’ force necessary to break an autoadhesive contact 
and deduce the surface energy. The interpretation depends on the model 
used.

DMT theory is appropriate for 1.0≤µ *
c R2N Γπ=and the pull-off force

*
c R5.1N Γπ=5≥µJKR theory is appropriate for           and the pull-off force 

For intermediate values of µ see Maugis (1992) – very complicated.

Note that, in both the DMT and JKR models, the pull-off force is 
independent of the elasticity of the particles.
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Assume the JKR model of adhesion
Johnson, Kendall & Roberts (1971)

Johnson (1976) gives the normalised 
force-displacement equation as
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AUTOADHESIVE ELASTOPLASTIC SPHERES

Thornton & Ning (1998)

If the interaction is not elastic then the unloading curves and the pull-
off force depend on the magnitude of the force from which unloading 
commenced, as illustrated in the figure.

The figure shows a numerical 
solution obtained using DEM.

There is no analytical solution.

It may be possible, using a DEM 
code with the appropriate contact 
mechanics algorithms, to match  
experimental data.



  

Tangential interactions for autoadhesive systems

see Johnson (1997)

Thornton (1991),Thornton & Yin (1991)

Savkoor & Briggs (1977) extended JKR theory to the initial application of a 
tangential force and showed that the contact radius is then defined by

The problem is not yet resolved.
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The above describes a peeling mechanism, during which

If T>Tcrit revert to Mindlin & Deresiewicz (1953).
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AGGLOMERATE-AGGLOMERATE COLLISIONS Kafui & Thornton (1996)

initial state

θ = 0° θ = 15° θ = 30°

θ = 45°

Each agglomerate has 2000 
primary particles of average 
size 100 microns.

Relative impact speed is 1 m/s.

Surface energy is 1 J/m2.

different impact angles θ



  

The effect of surface energy on the transition from fixed bed to bubbling bed



  



  



  

Liquid bridges (pendular) Lian, Thornton & Adams (1993)
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Hotta et al (1974)

Adams & Perchard (1985) 

Capillary force

Viscous force
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viscosity = 0 viscosity = 0.1 Pa.s

Body-centred cubic array of 4062 primary spheres, d = 60 µm

ρ = 2.65 Mg/m3 E = 70 GPa ν = 0.3  µ = 0.3

pendular liquid bridges

surface tension = 25 mn/m

bridge volume = 1.13x10-10 ml (S = 0.71%)

impact velocity = 2 m/s

Thornton, Lian & Adams (1993)



  

D = 0.38mm     <d> = 60µm

η = 0.01 Pa.s    γ = 0.025 N/m

initial

V = 1.0 m/s

normal impacts θ = 0°

V = 2.0 m/s V = 5.0 m/s

WET AGGLOMERATE COLLISIONS

1000 particles in each agglomerate



  

θ = 75°

OBLIQUE IMPACTS V = 5.0 m/s

θ = 0°
θ = 15° θ = 30°

θ = 45°
θ = 60°



  

PARTICLE-FLUID INTERACTIONS

Kafui, Thornton & Adams (2002)



  

particle equations of motion
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drag force

( )1
j

+χ−ε corrects for the presence of other particles

fluid drag coefficient for a single unhindered particle

and the dependence on the flow

particle Reynolds number



  

100,000 particles

fixed bed size 2 mm sq. x 2.9 mm high 

                  (40dp sq x 58 dp)

bed void fraction 0.404

coordination number         4.71

total number of fluid cells 5000
                             (10x10x50)

fluid cell size 4 dp cube

3D fluidised bed simulations



  

References

Adams MJ, Perchard V (1985). Chem. Eng. Symp. Series, 91, 147-160.
Derjaguin BV,Muller VM, Toporov YP (1975). J Colloid Interface Sci 53, 314-326
Fisher RA (1926). J. Agricultural Sci. 16, 492-505.
Goldsmith W, Lyman PT(1960). ASME J Appl Mech 27, 717-725.
Hotta K, Takeda K, Iinoya K (1974). Powder Technol. 10, 231-242.
Johnson KL (1976). Proc 4th IUTAM Congress, (Koiter, ed.) North-Holland, p 133 
Johnson KL (1985). Contact Mechanics, Cambridge University Press
Johnson KL (1997). Proc Roy Soc London A 453, 163-179
Johnson KL, Kendall K, Roberts AD (1971). Proc Roy Soc London A 324, 301-313
Kafui KD, Thornton C (1996). Proc. 5th World Congress on Chem. Engng., San Diego.
Kafui KD, Thornton C, Adams MJ (2002). Chem. Eng. Sci. 57, 2395-2410.
Li L-Y, Wu C-Y, Thornton C (2002). IMechE  C, J Mech Eng Sci 216,421-431
Lian G, Thornton C, Adams MJ (1992). J. Colloid Interface Sci. 88, 117-128.
Maugis D (1992). J Colloid Interface Sci 150, 243-269
Mesarovic SDJ, Johnson KL (2000). J Mech Phys Solids 48, 2009-2033.
Mindlin RD (1949). J. Appl. Mech. 16, 259-268.
Mindlin RD, Deresiewicz H (1953). ASME J Appl Mech 20, 327-344
Mishra BK, Thornton C (2002). Adv Powder Technol 13, 25-41
Samini A (2003) PhD thesis, University of Surrey
Samini A, Hassanpour A, Ghadiri M (2005). Chem Eng Sci 60, 3993-4004
Savkoor AR, Briggs GAD (1977). Proc. Roy. Soc. London A 356, 103-114.



  

Thornton C (1991). J. Phys. D: Appl. Phys. 24, 1942-1946.
Thornton C (1997). ASME J Appl Mech 64, 383-386
Thornton (1999) Mechanics of Granular Materials – an introduction (Oda & Iwashita, eds.) 
Balkema, 207-217.
Thornton C (2000). Constitutive Modelling of Granular Materials (Kolymbas, ed.), Springer, 
193-208.
Thornton C, Ning Z (1998). Powder Technol. 99, 154-162
Thornton C, Randall CW (1988) Micromechanics of Granular Materials (Satake & Jenkins,
eds.), Elsevier, 133-142
Thornton C, Yin KK (1991). Powder Technology 65, 153-166.
Thornton C, Lian G, Adams MJ (1993) Proc.2nd Int. Conf. on Discrete Element Methods, 
Cambridge, Massachusetts, 177-187.
Thornton C, Ning Z, Wu C-Y, Nasrullah M, Li L-Y (2001). Granular Gases (Pöschel & Luding, 
eds.) Springer, 184-194.
Wu C-Y (2001). PhD thesis, Aston University.
Wu C-Y, Li L-Y, Thornton C (2003). Int J Impact Engng 28, 929-946
Wu C-Y, Thornton C, Li L-Y (2007). Paper in preparation


