Shell ConSepTM Tray Technology Provides Unparalleled Distillation Capacity

Christine Groenendaal, Karl Kusters and Jose Bravo Shell Global Solutions International BV Brigitte Trautrims Shell Köln-Godorf (presenter)

Shell ConSepTM tray Principle & current applications

- Combines features of contacting tray and centrifugal separator
- Allows operation above floodpoint
- Tray efficiency and tray spacing comparable to conventional trays

450 mm < TS < 800 mm

 Inexpensive debottlenecking option for existing columns

Shell ConSepTM tray references

Country	Plant	Column diameter, m	Year	Max capacity increase achieved ¹
UK	NGL debutaniser	1.9	1995	23 % ²
Australia	FCCU debutaniser	1.9	1996	30 %3
Germany	HCU main fractionator	2.2	1999	50 %
Australia	NGL debutaniser	1.7	1999	10 %3
Singapore	FCCU debutaniser	2.5	2000	- ⁴

- 1. Post startup performance testrun capacity achieved on top of the existing HiFi/CS trays.
- 2. Limited by reboiler duty.
- 3. Limited by other hardware constraints.
- 4. No test run data available.

Shell ConSepTM tray Capacity gain

Definitions

Column load factor

$$\lambda = \frac{V}{\rho_g A_c} \sqrt{\frac{\rho_g}{\rho_l - \rho_g}} \quad \text{(m/s)}$$

Flow parameter

$$\phi = \frac{L}{V} \sqrt{\frac{\rho_g}{\rho_I}} \tag{-}$$

Where

 A_c = column cross section (m²)

L, V = liquid, vapour flow rate (kg/s)

 ρ_g , ρ_l = vapour, liquid density (kg/m³)

Background of Godorf Hydrocracker

- HCU originally designed / started up in 1983, feedrate 3000 t/d
- Revamped in 1989 to a capacity of 4500 t/d
- Throughput was further increased to 5700 t/d without any hardware changes
- Main bottleneck in the fractionation section

Hydrocracker Revamp May 1999

Increase throughput from 5700 t/d to 6400 t/d

HCU Main Fractionator

HCU Main Fractionator

Pre -revamp

- Column was equipped with 41 CS / HiFi trays
- Capacity was limited by flooding
- max Light naphtha production was 900 t/d

Revamp

- all trays above feed replaced by ConSep trays
- Installation of ConSep trays progressed without any major problems

Post- revamp

Start-up went smooth, no difference in operating behaviour

Increase in Light naphtha make in comparison prior revamp

Conclusions

- ConSep trays breakthrough in distillation tray technology
- HCU main frac third commercial application
- Tray capacity increase up to 50 % over previous CS trays has been proven with similar separation sharpness

