

Ionic liquids for the separation of gaseous hydrocarbons

Leila Moura

Supervisors: Catherine SANTINI and Margarida COSTA GOMES

Summary

- Economic context
 - Ionic liquids as separation agents
- State of the art: Ionic liquids for hydrocarbon separation
- Choice of ionic liquids
- Ethane and ethylene solubility in ionic liquids
- Conclusions
- Perspectives and future work

Economic context

Hydrocarbon gas

Cryogenic distillation

Ionic liquids

Low energy

30 months of UK electric energy demand

Impact

Ethylene use and capture

Crop growth

Fruit and vegetable ripening agent

Less pollutant/energy impact

Smaller scale applications

Non-traditional/sustainable sources

Biorefineries / recycling

Knowledge of separation technology

Job creation

Ionic liquids

Molten salts having a T_m below 100°C

- Negligible vapour pressure
- Designer solvents

Cations

Anions

Bistriflamide [NTf₂]⁻

Tetrafluoroborate [BF₄]⁻

Dicyanamide [DCA]

Ionic liquids as separating agents

- Transport and storage of AsH₃, PH₃, and BF₃ by Air Products
- Capture of CO₂ by ION Engineering
- Hycapure™ Mercury removal from natural gas
 - 99.997% mercury removal
 - Commercial operation (30 m³) since 2011

Ionic liquids as separating agents

ILs solubilize gases

At 313 K and 1 bar

- Are unsaturated hydrocarbons always more soluble than saturated ones?
- No systematic studies
- Focus in ethane/ethylene separation

Building of a database

Moura, Santini, Costa Gomes, Gas separations using ionic liquids in Chemical Process technology for a sustainable future, RCS book

Highest solubilities

$$\begin{bmatrix}
C_m \\
I_+ \\
C_m P - C_p \\
C_q
\end{bmatrix}$$

Little effect of anion

H₂C=CH₂ Ethylene

Highest solubilities

Little effect of anion

In summary

For ethane, ethylene, propane and propene

$$H_3C$$
— CH_3
 H_3C — CH_3
 H_3C — CH_2

$$\begin{bmatrix}
C_{n} & C_{m} \\
C_{n} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{m} & C_{p} \\
C_{n} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{m} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C_{p}
\end{bmatrix} > \begin{bmatrix}
C_{n} & C_{p} \\
C_{q} & C$$

- Cations with large non-polar domains
- Little influence of the anion

Ethane/ethylene separation

Ethane

$$H_3C-CH_3$$

Ethylene

Ideal selectivity

Mole fraction

$$\alpha = \frac{{}^{x}C_{2}H_{4}}{{}^{x}C_{2}H_{6}} \qquad x_{2} = \frac{n_{2}^{liq}}{\left(n_{1}^{liq} + n_{2}^{liq}\right)}$$

Single gas solubility experiments

Ethane/ethylene separation

Ethane

 H_3C-CH_3

Ethylene

Strategy

Phosphonium, [P_{nmpq}]+

- High ethylene and ethane absorption
- Not specific
- Very viscous or solid

Ethane/ethylene separation

Ethane H_3C-CH_3

Ethylene

$$H_2C=CH_2$$

Strategy

Imidazolium, [C_nC_mIm]+

- Higher selectivity
- Easy functionalization, know-how

$[NTf_2]$

- High ethane and ethylene solubility
- Low viscosity, easy to purify, known properties

Dicyanamide, [DCA]

 Low viscosity, presence of cyano groups leads interesting propane/propene selectivity

Choice of ionic liquids

How to increase the ionic liquid-ethylene interactions?

π-interactions types

- π - π (aromatic or non-aromatic)
- π-cation
- Anion-π
- Polar-π
- Metal-π

Choice of ionic liquids

1. Influence of the length of the alkyl side chain of the cation (NTf₂ anion)

$$[C_{1}C_{4}Im][NTf_{2}]$$

$$F_{3}C_{5}CF_{3}$$

$$[C_{1}C_{8}Im][NTf_{2}]$$

$$[C_{1}C_{8}Im][NTf_{2}]$$

2. Influence of unsaturations in the alkyl side chain of the cation (NTf₂ anion)

1. Amount of gas in the ionic liquid

$$n_{2}^{liq} = \frac{p_{ini}V_{VG}}{[Z_{2}(p_{ini}, T_{ini})RT_{ini}]} - \frac{p_{eq}(V_{tot} - V_{liq})}{[Z_{2}(p_{eq}, T_{eq})RT_{eq}]}$$

$$Z = 1 + \frac{pB}{RT}$$

Initial amount of gas

Amount of free gas

2. Mole fraction

$$x_2 = \frac{n_2^{liq}}{\left(n_1^{liq} + n_2^{liq}\right)}$$

3. Henry's law constant

$$K_{H} \equiv \lim_{x_{i} \to 0} \frac{f_{2}(p, T, x_{2})}{x_{2}} \cong \frac{\phi_{2}(p_{eq}, T_{eq})p_{eq}}{x_{2}}$$

$$\phi = e^{\frac{\mathsf{Bp}}{\mathsf{RT}}}$$

Thermodynamic properties of solvation

Thermodynamic properties of solvation

Variation with the temperature

Solute-solvent interactions

Structure of solution

More favorable enthalpy of solvation justifies the higher solubility of ethene

Ethane H₃C—CH₃

Ethylene $H_2C = CH_2$

- Ethane and ethylene close to alkyl chain of the cation
- Ethylene closer of the aromatic ring
- Ethylene more mobile due to the competition for multiple solvation sites
- Solvation entropy more favorable for ethylene

Ethane H_3C — CH_3

Ethylene

$$H_2C = CH_2$$

- Ethane surrounds the unsaturation
- Ethylene is found in the extremity of the alkyl chain

Solvation enthalpy more favorable for ethylene

More favorable entropy of solvation justifies the higher solubility of ethylene

Ethane H₃C—CH₃

Ethylene

- Ethane is found close to the equatorial H of the benzyl group
- Ethylene is found planar to the aromatic ring, probably an indication of an interaction
- Solvation entropy more favorable for ethylene, it blocks the cation-anion interaction sites

At 313 K and 1 bar

Performance

Solubility vs selectivity

Conclusions

- We chose to study the ethane/ethylene separation:
 - Higher economical interest
 - Technologically more challenging

 Contrary to what is stated in the literature, ethylene is not always more soluble than ethane, the solubility ranges overlap

Effects in ethane/ethylene and propane/propene separation should be similar

Conclusions

- Ethane/ethylene separation in selected ionic liquids
 - Complex effects interplay between gas-solute interaction and structure of the solution
 - π-π and π-cation interactions are not specific enough to gain against what is lost in entropy

Non specific interactions control the solubility in the carefully chosen ionic liquids

Perspectives

2 options

More specific interactions

Less specific interactions

Pay higher price for recycling

Several cycles and pay low price for recycling

Interdisciplinary work is necessary to achieve a balance

Future work

5-year engineering fellowship

Academy supports engineering excellence through nine research fellowships

- Start my research group
- Chemisorbent materials for olefin separation
- Rapid measurement of gas liquid equilibria in industrial conditions (mixed gases, T, p)
- Spectroscopic and chromatographic sensors

Acknowledgments

Prof Margarida Costa Gomes

Prof Catherine Santini

Lyon 1

Dr Alain Methivier

Prof Agilio Padua

Dr Varinia **Bernales**

UNIVERSITÉ Clermont Auvergne

Mr Manas Mishra

Dr Sophie **Fourmentin**

Dr John Holbrey

Dr Peter Klusener

Dr Panagiotis Manesiotis

Dr Gosia Swadzba-Kwasny

