

Cyclic Separation: New trays and Experimental Results

EFCE WP Fluid Separations Technical Meeting #58, May 12, 2016 Copenhagen, Denmark

Abildskov J., Bay Jørgensen S.

CAPEC-PROCESS

Department of Chemical and Biochemical Engineering

Technical University of Denmark

Outline

Cycled Trays Operation

- Theoretical Performance: Lewis Case II analogy
- Early realizations; Simultaneous Draining
- Simultaneous Draining; Problems
- Ideas to approach theoretical performance

New Principles of Design and Operation

New Trays and Sequential Tray Draining

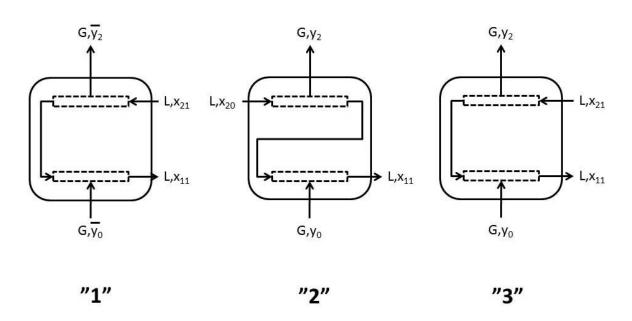
New Realization

Results

Future Directions

Conclusions

Other Explorations


- AIChE Spring Meeting 2016
- C. Knoesche, J.
 Paschold, S. Buetehorn
 (BASF):
- Paper 87b: "Cyclic Operation of Distillation Columns"
- Maleta CD

Theoretical Performance: Lewis Case II Analogy

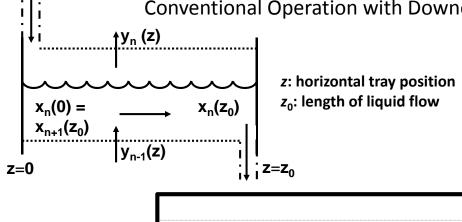
Theoretical Performance: Lewis Case II Analogy

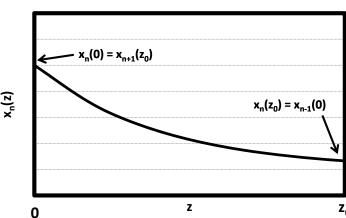
CASE	" I "	"II"	"Ш"
$\varepsilon_{\text{tray}}/\varepsilon_{\text{point}}$	1.7	2	1.5
	_	\ 1	

 $\epsilon_{point} \to 1$

• Performance:

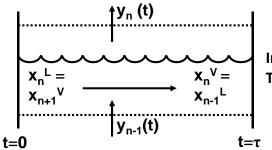
• (Convenience of) realization:


" ... (Lewis' case III) is probably the most common in conventional operation because of designers' understandable reluctance to install downcomers in the configuration of case II" (Sommerfeld et al., 1966)

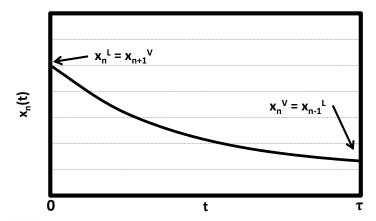


Theoretical Performance:

Lewis Case II Analogy; Conventional Operation with Downcomers

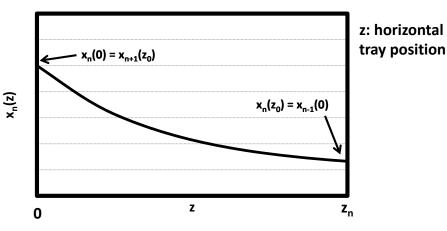

- ⇒ Liquid in downcomer from n+1enters plate n at z = 0: $x_n(0) = x_{n+1}(z_0)$
- \rightarrow No liquid backmixing; progressive depletion of volatile component by contact with vapor from plate n-1

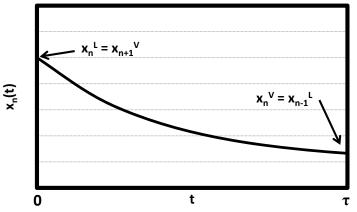
$$\Rightarrow$$
 z = z₀: $x_n(z_0)$ is discharged to $n-1$



Theoretical Performance:

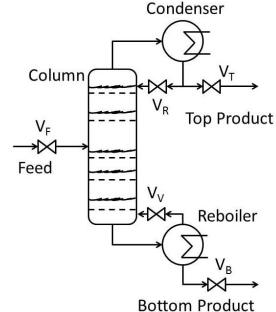
Lewis Case II Analogy; Cyclic Operation without downcomers


Independent variable: t Time length: VFP = τ



- → No liquid phase enrichment on plate n by liquid flowing down
- → No liquid back-mixing in time domain
- \rightarrow Depletion of volatile component occurs monotonically with time
- → Perfectly mixed plate
- → Amount of material dropped during LFP is exactly equal to one plate holdup

Theoretical Performance: Lewis Case II analogy - Sommerfeld (1966)


t: time of vapor flow period of duration τ

Early realizations; Simultaneous

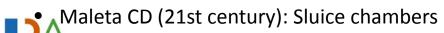
Draining

- Three 1961 papers (Cannon)
- Exactly one plate holdup must be dropped during LFP
- Basis of the generation:
 Simultaneous Draining
- TP = VFP + LFP
- Modeling:
 - ☐ McWhirter (1963)
 - ☐ Sommerfeld et al. (1966)
 - ☐ Chien et al. (1966)
 - ☐ Robinson/Engel (1967)

Vapor Flow Period (VFP): V_P , V_R , V_T and V_B are closed. V_V is open. Liquid Flow Period (LFP):

 V_T , V_B , V_F , V_R are opened. V_V is closed.

Simultaneous Draining; Problems


- Back-Mixing
- Non-uniform draining of trays
 - ☐ Schrodt V. N. et al., 1967. Chem. Eng. Sci., 22, 759
 - ☐Gerster J.A., Scull H.M., 1970. AIChE J., 16, 108.
 - ☐ Larsen J., Kümmel M., 1979. Chem. Eng. Sci., 34, 455.
- Pressure Dynamics
- Liquid oscillations on trays

Approaches to Theoretical Performance - Improved Liquid Flow Control

- Matsubara
 - Collect liquid in a store, prior to transfer to the tray below.
 - Vapor transferred in tubes from tray to tray
- Furzer (TD) Time delay trays
 - · Gutter channels to delay the liquid draining
 - Baffles to avoid oscillations
- Hentrich/Vogelpohl (1980)
 - 1st approach: Liquid was led into a storage tube; when all trays were empty, the liquid was released into the next tray. This was accomplished using a central rod in the column (EXPENSIVE).
 - 2nd approach: Sieve tray with packing material below, to make the liquid drain more slowly during the LFP
- Baron: Stepwise Periodic Operations

New Principles of Design/Operation

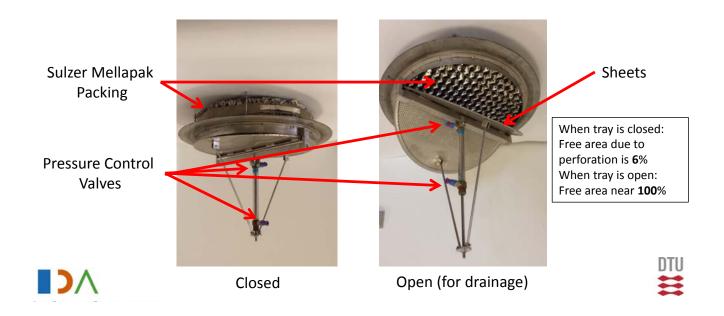
Tray Design Principle:

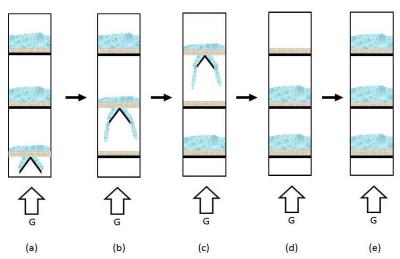
The periodic cycled separation tray should be constructed such that:

- 1) All the liquid leaves the tray and enters the tray below *without* being mixed with any other liquid during the liquid drainage
- 2) Vapor flow can continue during liquid drainage

Operational Principle for Sequential Tray Draining:

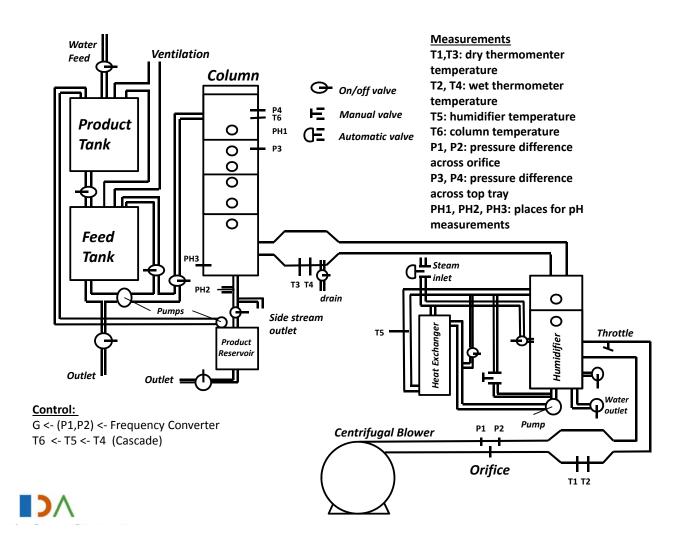
To minimize mixing with liquid from other trays enforce a special operational principle for Sequential Tray Draining:


The trays are emptied *sequentially rather than simultaneously*, while the vapor flow is maintained throughout

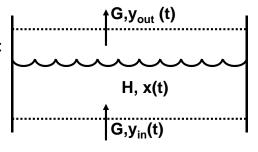


New Realization; Trays

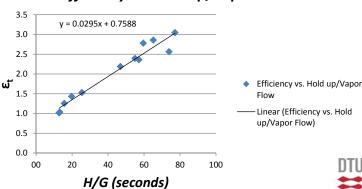
<u>Cyclically Operated Perforated Sheets (COPS)</u>
Layer of structured packing for liquid oscillation damping


New Realization; Sequential Tray Draining

Sequential tray drainage operation for a column with three trays. When the top tray is empty (d) a load of liquid is fed to the top tray (e). The column remains in state (e) for the remainder (if any) of the cycling period time until a new liquid drainage sequence is initiated at the start of the next period (a) - (c).

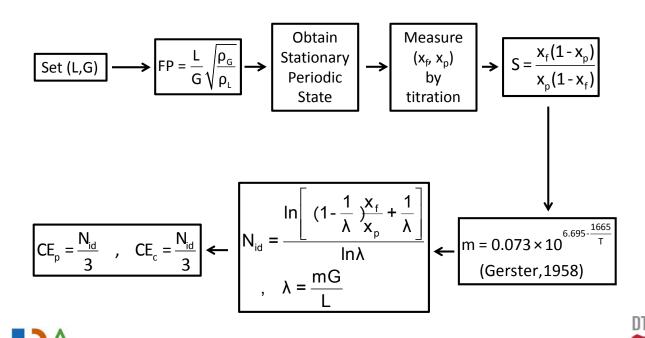


Results; Point Efficiency, ε_t

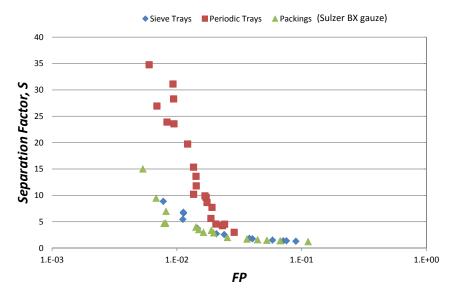

- Strip NH₃ from water (Gerster/Scull, 1970)
- Tray molar balance + Murphree expression:
 → Slope of pH versus t gives ε_t

$$\begin{split} H\frac{dx}{dt} &= G(y_{in} - y_{out}) \quad \Rightarrow \\ \frac{dx}{dt} &= -\epsilon_t \frac{G}{H} m \cdot x \quad \Rightarrow \quad \frac{dx}{dt} + \epsilon_t \frac{G}{H} m \cdot x = 0 \\ &\Rightarrow \quad \epsilon_t = \frac{H}{Gmt} \big[logc(t=0) - logc(t) \big] ln10 \\ &= \frac{2H}{Gmt} \big[pH(t=0) - pH(t) \big] ln10 \end{split}$$

- Assume: Only NH₃ transfer
- CO₂ Controversy

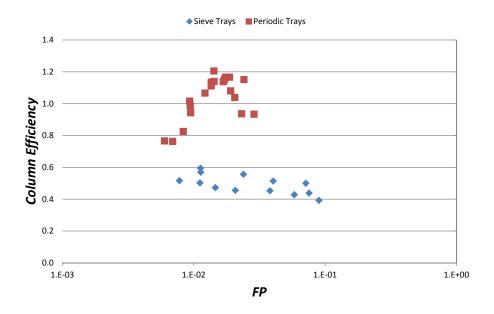


Efficiency vs. Hold up/Vapor Flow

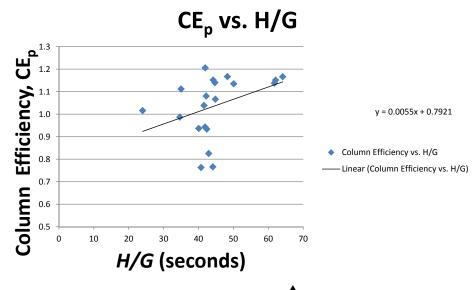


Results; Column Efficiency, Experimental Procedure

Results; Separation Factors

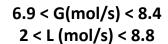


Stream	Limits
G (mol/s)	5-10
L (mol/s)	0-20


Results; Column Efficiencies

Results; Influence on Tray Efficiency of Flows

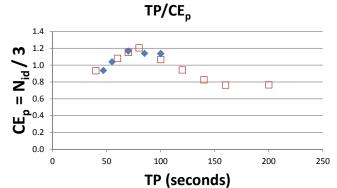
Results; Influence on Column Efficiency of Period Lengths

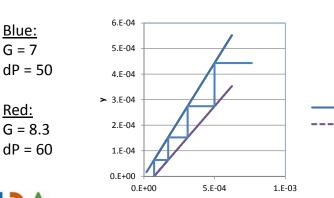

Maximum?

TP: Total Period Duration

$$N_{id} = \frac{\ln \left[(1 - \frac{1}{\lambda}) \frac{X_f}{X_p} + \frac{1}{\lambda} \right]}{\ln (\lambda)}$$

λ= mG/L


Experimental data make N_{id} go thru extremum



Why optimum TP?

Equilibrium Curve:

y* = x·m

Operating Line:

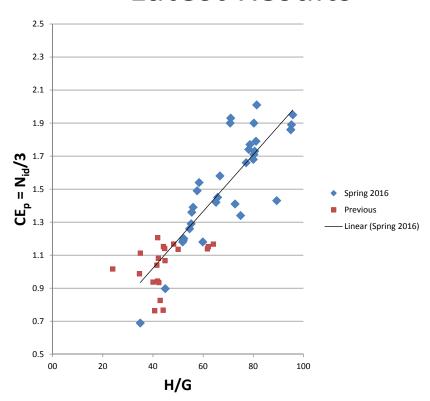
$$y = (x-x_p) \cdot (L/G)$$

$$TP \uparrow \sim L \downarrow \sim (L/G) \downarrow \sim N_{id} \downarrow$$

BUT if

$$x_p \downarrow N_{id} \uparrow$$

This may compensate, if x_p gets sufficiently low. This seems to be the case at low TP values, but only up to 80 seconds.


Further Work

• Operation at H/G beyond 70 seconds?

Latest Results

Conclusions

• Presented:

- New Tray Design (Principle): COPS
- New Operational Principle: Sequential Draining
- Steady Operation: Avoiding Pressure Dynamics and Liquid (Back) Mixing

• Future Directions:

- Operation at higher (periodic) tray efficiencies

