Membrane vs. Distillation – A Power Demand Study for Hydrocarbon Mixtures

Rakesh Agrawal
Jose Adrian Chavez Velasco
Mohit Tawarmalani*

Davidson School of Chemical Engineering

Purdue University, USA

*Krannert School of Management Purdue University

Distillation processes are widely used in the chemical industry

Just in the U.S., over 90-95% of all separations in Chemical and Petrochemical plants are performed by distillation columns¹

Despite the high relevance, they are not at the forefront of separations research in the USA

https://www.industrialaccess.com

Are distillation separations most energy intensive?

According to NASEM Study²:

It is stated that³ replacing thermal methods by membranes could potentially cut energy consumption by a factor of 10

Is it true that distillation processes are generally most energy intensive?

How have two separation methods been compared? An example: propylene/propane separation

Reboiler heat duty for distillation

$$Q_{dist} = 0.5 \frac{kWh}{lb \ propylene}$$

Compressor work for membranes with permselectivity = 35

$$^4W_{mem} = 0.050 \frac{kWh}{lb \ propylene}$$

It appears that distillation consumes an order of magnitude more energy

However, Comparing Membranes with Distillation is Not Straightforward

Membranes Use Work (electricity for increasing pressure)

Distillations Use Heat in the Reboiler

Directly Comparing These Two Forms of Energy Generally Results in Wrong Conclusions

Another common approach employed to compare heat vs work

However, it is important to account for temperatures when comparing heat

Another common approach employed to compare heat vs work

This approach implicitly assumes that the heat for distillation directly comes from burning fuel

Heat supplied to a distillation can come from a lower temperature source

Effective Q_{fuel} = Amount of additional fuel needed to supply needed LP steam while keeping power generation ($W_{electrical}$) constant

When heat is supplied by LP steam from a power plant, effective Q_{fuel} could be lower than Q_{reb}

A system level analysis is needed to compare separation processes

Let Us Compare Both Processes When Each is Powered by Electricity

For Proper comparison, we need to ensure that both processes are at their global minimum in energy.

Distillation can be operated with electrical work input

Heat supplied distillation

Heat rejected

Heat Pump (HP) assisted distillation

Sometimes it is more energy efficient to operate distillation with work than with heat

Comparing heat with heat pump work

Simulated conditions

- Saturated liquid feed
- $x_{A,f} = 0.50$
- Complete separation

Heat duty decreases with increasing α

Heat pump work increases with α

Comparing heat with heat pump work

Simulated conditions

- Saturated liquid feed
- $x_{A,f} = 0.50$
- Complete separation

Heat duty decreases with an increase in α

Heat pump work increases with a

Revisiting propane/propylene separation A more efficient way to operate distillation

$$Q_{fuel, Sep} = 0.6 \frac{kWh}{lb \ propylene}$$

$$Q_{fuel, Sep} = 0.04 \frac{kWh}{lb \ propylene}$$

Heat pump distillation consumes 15 times lower fuel than heat supplied distillation for this separation

Calculating Power for Membrane Processes

A Single stage membrane Processes is often Limited in Product Recovery and purity

Example: propylene/propane

Propylene recovery (% mol)	Propylene purity in permeate (%mol)		
50	98		
99	87		

Typically, propylene is needed with 99.5% purity and 99 % recovery

Developed A Membrane Cascade MINLP Optimization Model

A membrane cascade superstructure for gaseous mixtures

A membrane cascade superstructure for liquid mixtures

Structure of the membrane cascade optimization model (MINLP)

Objective function: Minimizing total power consumption

Specifications: Feed and product compositions, feed temperature, membrane selectivity, bounds on pressure and flow variables, efficiencies of pressurization equipment, and maximum number of stages

Optimized variables: recycle flows and compositions, trans-membrane pressure ratio or trans-membrane pressure difference

Constraints:

Overall mass balances

Linear

Component mass balances

Bi-linear

Membrane model for each stage

Non-convex

Objective function

Bilinear

GAMS We use the solver

Revisiting propane/propylene separation

Optimizing membrane cascade with different permselectivities

$$^4W_{mem} = 0.050 \; \frac{kWh}{lb\; propylene}$$

$$W_{mem} = 0.030 \frac{kWh}{lb \ propylene}$$

We formulated and solved the MINLP to optimize the membrane cascade power

⁴Colling et al., (2004). U.S. Patent No. 6,830,691

⁵Chae et al. RSC Advances 4.57 (2014): 30156-30161

Revisiting propane/propylene separation comparing the two methods with optimized powers

Heat pump distillation

Fuel

Membranes

$$W_{dist} = 0.02 \; \frac{kWh}{lb \; propylene}$$

$$Q_{fuel, Sep} = 0.04 \frac{kWh}{lb \ propylene}$$

$$W_{mem} = 0.03 \frac{kWh}{lb \ propylene}$$

$$Q_{fuel, Sep} = 0.06 \frac{kWh}{lb \ propylene}$$

Distillation consumes less energy than the membrane system

Revisiting propane/propylene separation comparing the two optimized methods

Heat pump distillation

Membranes

$$Q_{fuel, Sep} = 0.04 \frac{kWh}{lb \ propylene}$$

$$Q_{fuel, Sep} = 0.06 \frac{kWh}{lb \ propylene}$$

The actual fuel heat consumed by distillation is over 12 times lower than the reboiler heat

Fuel

Do non-thermal alternatives have potential to reduce the energy consumption by a factor of 10?

Separation work (kWh/lb propylene)

Thermodynamic minimum: 0.006

Heat pump distillation: 0.02

Membranes: 0.03

The belief that membranes would cut down the energy consumption by a factor of 10 is incorrect for the propane/propylene example

Heat Pump Distillation vs Membrane: propylene/propane

Simulation Parameters

- Membrane selectivity: 50
- 4 stage membrane cascade

For moderate feed concentration, membrane consumes lower power at lower product purity and recoveries

Separation of p-xylene/o-xylene Another case study

Fuel

Heat Pump Distillation vs Membrane: p-xylene/ o-xylene

Membrane Parameters: Selectivity: 50, 4 stage cascade

<u>Case</u>

- Low Relative Volatility
- Low Feed Concentration
- At all product purities and recoveries distillation is much better than membranes.

Heat Pump Distillation vs Membrane: p-xylene/ o-xylene

Membrane Parameters: Selectivity: 50, Minimum 4 stage cascade

<u>Case</u>

- Low Relative Volatility
- Moderate Feed Concentration
- At high product recovery, distillation is better
- At lower recovery and high purity, two are comparable
- At lower product purity and recovery, membrane is better

Heat Pump Distillation vs Membrane: p-xylene/ o-xylene

Membrane Parameters: Selectivity: 50, Minimum 4 stage cascade

<u>Case</u>

- Low Relative Volatility
- High Feed Concentration
- Membrane is either comparable or better at all product purities and recoveries

However, as relative volatility increases, even for high feed concentrations, distillation begins to demand lower power

Membrane Parameters: Selectivity: 50, Optimal cascade with maximum 4 stages

<u>Case</u>

- High Relative Volatility (Hexane/Decane Mixture)
- High Feed Concentration
- Relative volatility for C₆/C₁₀ = 14.1

Distillation is better at all recoveries

Heat Pump Distillation vs Membrane: Liquid Hydrocarbon Mixtures

Membrane Parameters: Selectivity: 50, Optimal cascade with maximum 4 stages

Case

Moderate Feed Concentration

At high relative volatilities (C₆/C₁₀ = 14.1;
 C₆/C₁₂ = 29.2; C₆/C₁₆ = 77.3), distillation is better at all recoveries.

Cases Considered So Far

More permeable component is also the more volatile component.

The product of interest is enriched in the more permeable/more volatile component

Cases Considered So Far

More permeable component is also the more volatile component.

The product of interest is enriched in the more permeable/more volatile component

For these we may make an attempt to generalize observations.....

First, we Classify All the Studied Feed and Product Cases

Feed		Product			
Composition (x_f)		Molar recovery (R)		Purity (y^o)	
$x_f \ge 90\%$	High concentration	<i>R</i> ≥ 99%	High	$y^o \ge 99.5\%$	High purity
$x_f \le 20\%$	Low				
	concentration				
$90\% > x_f > 20\%$	Moderate	$90\% > R \ge 50\%$	Modest	$97\% \ge y^o \ge 80\%$	Modest purity
	concentration				

Then We Sum Up the Observations

	Feed concentration	Product recovery	Product purity	Lower power option
1.	Low to moderate	High	High	Distillation
2.	Moderate	Modest	High	Toss up ²
3.	Moderate	Modest	Modest	Likely membrane
4.	Moderate	High	Modest	Distillation
5.	High	High	High	Likely distillation
6.	High	Modest	High	Toss up ²
7.	Low	Modest	Modest	Distillation

² Toss up refers to cases where for close boiling mixtures, membranes have a potential to be the low energy option, however, for higher boiling mixtures, distillation would be preferred.

Summary: Comparing Energy Efficiency of Membranes & Distillations

For hydrocarbon mixtures, where more permeable component is also the more volatile component and is the desired product:

- Both membranes and distillations have energy efficient domains.
- Distillation is more efficient for high product recoveries (at all tested product purities).
- Distillation is more efficient at modest recoveries for high purity products.
- For close boiling and highly enriched feeds, membrane provides energy benefits for a high purity product at modest recoveries.
- Membranes are more efficient when feed concentration is moderate to high and product recovery and purity are modest.
- The factor of energy improvement by membranes is usually limited.
- However, distillation can outperform membranes under many situations and often the improvement in energy consumption is substantial.

